198 research outputs found

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Calibration method to improve transfer from simulation to quadruped robots

    Get PDF
    Using passive compliance in robotic locomotion has been seen as a cheap and straightforward way of increasing the performance in energy consumption and robustness. However, the control for such systems remains quite challenging when using traditional robotic techniques. The progress in machine learning opens a horizon of new possibilities in this direction but the training methods are generally too long and laborious to be conducted on a real robot platform. On the other hand, learning a control policy in simulation also raises a lot of complication in the transfer. In this paper, we designed a cheap quadruped robot and detail a calibration method to optimize a simulation model in order to facilitate the transfer of parametric motor primitives. We present results validating the transfer of Central Pattern Generators (CPG) learned in simulation to the robot which already give positive insights on the validity of this method

    Lift-off dynamics in a simple jumping robot

    Get PDF
    We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency f0f_0. Two distinct jumping modes emerge: a simple jump which is optimal above f0f_0 is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below f0f_0 is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.Comment: 4 pages, 4 figures, Physical Review Letters, in press (2012

    Hand–foot motor priming in the presence of temporary inability to use hands

    Get PDF
    To verify if the link between observed hand actions and executed foot actions found in aplasics is essentially induced by the constant use of foot substituting the hand, we investigated if the vision of a grasping hand is able to prime a foot response in normals. Participants were required to detect the time-to-contact of a hand grasping an object either with a suitable or a less suitable movement, an experimental paradigm known to induce a priming effect. Participants responded either with the hand or the foot, while having free or bound hands. Results showed that for hand responses motor priming effect was stronger when the hands were free, whereas for foot responses it was stronger when the hands were bound. These data are interpreted as a further evidence that a difficulty to move affects specific cognitive functions and that the vision of a grasping hand may prime a foot response

    Learning Legged Locomotion

    Full text link
    Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g. physical interactions between feet and ground, skeletons an
    corecore